
Reflection for Secure IT Client and
Server for UNIX
Evaluation Guide
November 2020

Serious about Security?
You’re ready to get serious about security, and Reflection for Secure IT can help. By replacing non-secure Telnet
and FTP with a reliable encrypted alternative, administrators can access any TCP/IP-based application through
a secure transmission tunnel, and safely transmit sensitive data and manage remote servers--even over
untrusted networks.

Why use Secure Shell?
The Secure Shell (SSH) protocol is a flexible, dependable way to guarantee the safety of your data in motion.
The following vital features provide reliable safeguards that are increasingly important in today’s world:

 Server authentication ensures that your clients communicate with the correct server.
 Client authentication ensures that only authorized client users can connect to your server.
 Data encryption assures that data in transit is indecipherable -- the client and server establish a unique

key for each Secure Shell session, and this key is required to decipher the data.
 Data integrity checking verifies that your data has not been altered during transit.
 Port forwarding protects TCP/IP communications sent over an untrusted network.

Why use Reflection for Secure IT?
To build a security solution you can trust, you need to work with software and people you can trust. With
Reflection for Secure IT and Micro Focus you can count on:

 Rock solid, supported software.

Our developers use the latest techniques in secure software design to ensure that Reflection for Secure IT
products are optimized for stability and security.

 Cross-platform support.
Reflection for Secure IT clients and servers are available for Windows and UNIX operating systems. and
run on both 32-bit and 64-bit hardware.
Reflection for Secure IT Client and Server for UNIX Evaluation Guide 1

 Responsive technical support.
Our technical support experts work closely with you and with our development team to make sure that
your questions and concerns are answered quickly and correctly.

 Security updates.
Our security specialists watch for potential security vulnerabilities. In the event that we learn of a new
vulnerability, we keep you informed and make it our top priority to resolve your security concerns.

 Comprehensive documentation.
Our documentation team is committed to providing you with complete, technically accurate information
about all facets of our products.

See for yourself!
The evaluation software is fully-functional, time-limited copy of Reflection for Secure IT. The evaluation
package installs both the Reflection for Secure IT server and the client.

If you haven’t yet downloaded the evaluation software, go to https://www.microfocus.com/en-us/products/
reflection-secure-it/overview, select the product you want to evaluate, and the fill out the evaluation request
form. Shortly after you submit the form, you’ll receive an email message with a link to the evaluation
download page.

1. From the download library page, select the package link that’s appropriate for your UNIX platform.
2. Locate the User Guide, which is available in both HTML and PDF format on the support site: https://

support.microfocus.com/manuals/rsit_unix.html
3. If you’re installing on a system that is already running a Secure Shell client or server, you must uninstall the

earlier, existing version, before you install Reflection for Secure IT. (For details, see the “Installation”
chapter in the user guide.)

4. Download the package from the File Information and Download page, and then follow the procedures in
the user guide to install Reflection for Secure IT on your system.

Getting started with Reflection for Secure IT
This guide walks you through a few key tasks that are familiar to typical Reflection or Secure IT users. After you
try the procedures, you can review the ideas under “Do more...” There you’ll find suggestions that can help you
use the rich feature set in Reflection to maximize the highest levels of security, while saving time and money.

After you’ve installed Reflection for Secure IT, you can use the ssh command with -V to confirm a successful
installation.

NOTE: A script is installed that you can use to start, stop, and restart the server. The name and location of the
script varies, depending on your operating system. For details, see the user guide.
2 November 2020

Displaying the host key fingerprint
The Reflection for Secure IT server uses public key cryptography to authenticate the server host. A host key
pair is created when you install the server. (Or, if you uninstalled an existing Secure Shell server, the server uses
your existing host key. If your key is already in /etc/ssh2, the server uses that key. If an OpenSSH host key is
found in /etc/ssh, that key is migrated to the correct format and location, and the server uses the migrated
key).

You can confirm the identity of your host key by displaying its unique fingerprint. This information is useful to
have when client computers connect to your server for the first time. To display your host key fingerprint, use
the ssh-keygen command as shown here:

$ ssh-keygen -F /etc/ssh2/hostkey.pub
Fingerprint for key:
xokin-lunob-megec-biguc-pizyh-tahuv-cebup-ricum-maves-nydam-zyxax
You’ll see this same fingerprint again when you make your first test connection in the next exercise.

Getting Connected
For a first test, let’s make a connection from the Secure Shell client to the server running on the same
computer.

Connect to localhost
By using localhost for the server name, the following command connects your Secure Shell client to the server
running on the same computer. Because no user name is specified, the client connection uses your current
login name.

1. To initiate the test connection, enter the following command:

$ ssh localhost
The client doesn’t yet have a copy of your host key, so you’ll see an unknown host key prompt like this
one:

Host key not found in hostkeys database.
Key fingerprint:
xokin-lunob-megec-biguc-pizyh-tahuv-cebup-ricum-maves-nydam-zyxax
You can get a public key's fingerprint by running
$ ssh-keygen -F publickey.pub
on the keyfile.
Are you sure you want to continue connecting (yes/no)
[Enter=no]?
Notice that the fingerprint in the prompt matches the host key fingerprint you saw earlier, confirming that
the server you’re connecting to is, in fact, the server running on your computer, and not an imposter.

2. Enter yes to the unknown host prompt.
3. To complete the connection, enter your password.
4. To close the test connection, type exit.

What happened when you accepted the unknown key?
Reflection for Secure IT Client and Server for UNIX Evaluation Guide 3

When you respondend “yes” to the unknown host prompt, the client added your host key to your known hosts
list. To locate the key, look for the following file in your home directory:

.ssh2/hostkeys/key_22_localhost.pub
The key name identifies the host and port. (In most cases, it will also include the host’s IP address, which is
missing in this localhost example.) As long as this file remains in place, you won’t see another host key prompt
when you connect to this server from your current user account on this computer.

Connecting securely to a remote server
Now that you’ve tested a local connection, you are ready to test a connection from a client running on one
computer to a server running on a remote host. (You can install the Reflection for Secure IT evaluation
software on both computers, or connect to and from computers running other SSH programs.)

1. Use the following syntax to make your connection: ssh user@hostname. For example, $ ssh
Lee@abc.com

2. Confirm the host key and authenticate to the server. You can now use the remote terminal session to
execute commands securely on the server.

Do more...
The User Guide is available in both HTML and PDF formats on the support web site. Information on each of
these following features are available in detail there or from the product’s local documentation.

 Find additional information about ssh command line options

These examples demonstrate ssh without using any of the many options available for modifying the
connection. To see a short summary of command line options, use -h as shown here: $ ssh -h

 Modify the default client and server settings
You can modify the default client settings by editing the configuration file. The global client configuration
file is /etc/ssh2/ssh2_config, which is installed when you install the product.
You can modify the default server settings by editing the configuration file. The global server configuration
file is /etc/ssh2/sshd2_config, which is installed when you install the product.

 Configure public key authentication
With public key user authentication, the Secure Shell server uses a unique digital signature to
authenticate the client user. To configure this, you create a key pair on your workstation using the ssh-
keygen utility, upload the public key to $HOME/.ssh2 on the server, and edit your$HOME/.ssh2/
authorization file.

 Use OpenSSH format public keys
The Reflection for Secure IT server can use public keys created by OpenSSH clients. To use an OpenSSH
public key for authentication, simply copy the public key to $HOME/.ssh2 on the server, and edit your
$HOME/.ssh2/authorization file. You don’t need to modify the key format or make any changes to
the client.

 Install known host keys on client computers
To simplify initial connections, and eliminate the risk created by allowing users to accept unknown host
keys, you can install host keys on client computers

 Reuse an existing connection
4 November 2020

https://support.microfocus.com/manuals/rsit_unix.html

You can use the client ConnectionReuse keyword in the ssh2_config file to configure reuse of existing
connections. Enabling this feature allows you to start new ssh, scp, and sftp sessions without having to
reauthenticate. When ConnectionReuse is set to “yes,” a new session reuses an existing tunnel if the
target host, port, and user are all identical to those used for the established connection.

 Use the man pages to get detailed command and configuration help
UNIX manual pages are installed for all supported commands and configuration files. To view these, type
man followed by the command for filename. For example, $man ssh2_config.

Secure File Transfer
Reflection for Secure IT supports two file transfer commands: sftp and scp. Both commands can help you
manage file transfers efficiently and securely.

Transferring files using scp
Each scp command established a Secure Shell connection and transfers one or more files. For each transfer,
specify the source followed by the destination, as shown below. Both source and destination file specifications
can include host and user information to indicate that files are to be copied to or from a remote host. All
transferred data is securely encrypted.

Here’s the basic syntax:

scp [[user@]host:]source [[user@]host:]destination
Here are some examples to get you started.

 The following example copies a local file (fxl.htm) to the specified remote directory (demo/path/). The
client user (Lee) needs to authenticate to the server host (abc.com) before the transfer occurs:

$scp fxl.htm Lee@abc.com:demo/path/
 The next example copies multiple remote files from the default remote directory to the local computer. (In

this case, the destination is designated by the single period representing the current local directory.)

$ scp Lee@abc.com:*.htm .
 Finally, here’s an example that transfers a file between two remote hosts. Before this transfer can occur,

two client authentications are required - one for each host.

$ scp Lee@abc.com:source/file1
Lee@xyz.com:destination/

If your company’s security policies allow the use of passphraseless public keys, you can configure public key
user authentication with keys that don’t require user input for authentication. With this setup, you won’t need
to enter a password for each scp connection. You might take this approach if you want to create batch files to
automate scp transfers.

Tranferring files using sftp
You can use an interactive sftp session to transfer files securely between the client and a remote server, and
also to execute file management commands securely on the remote server.

1. To open an interactive sftp session, first connect to a remote host as shown in this example:
Reflection for Secure IT Client and Server for UNIX Evaluation Guide 5

$ sftp Lee@abc.com
After a successful connection is established, the following prompt appears: sftp>

2. For a quick list of available commands, use the following: sftp>help
3. To get additional help on any individual command, type help followed by the command name. For

example, to see details about the get command, use the following: sftp>help get.
4. Use any of the available sftp commands to transfer and manage files.
5. Use exit to end the sftp session: sftp>exit.

In the following sample session, Lee uses sftp to connect to the remote server abc.com. After authenticating
successfully, she change the remote directory (cd), lists the remote files (ls), transfers a group of files from the
remote server to the current local director (get), lists the local files to confirm the transfer (lls), and then ends
the session (exit).

$ sftp Lee@abc.com
Lee's password:
Authentication successful.
sftp> cd demo
sftp> ls

.:
f1.txt f2.txt f3.txt fx1.htm fx2.htm fx3.htm
sftp> get *.htm
/demo/fx1.htm 4 0.0KB/s
00:00 100%
/demo/fx2.htm 4 0.0KB/s
00:00 100%
/demo/fx3.htm 4 0.0KB/s
00:00 100%
sftp> lls *.htm
fx1.htm fx2.htm fx3.htm
sftp> exit
$

Do more...
 Find additional information about scp and sftp command line options

To see a short summary of command line options, use -h as shown here: $ scp -h or $ sftp -h. There
is more information in the appendix of the user guide.

 Control overwrite behavior in scrp transfers
By default, existing files are overwritten when you transfer files using scp. To control overwrite behavior,
use the --overwrite flag on the command line. Options include yes, no, and ask. For example, to query the
user before overwriting a file: $ scp --overwrite ask fxl.htm Lee@abc.com.

 Create sftp batch files
To create and use sftp batch files, you can configure the client and server to support a non-interactive
client authentication method, such as GSSAPI, or public keys without passphrase protection. Then, on the
client, create a batch file that contains the sftp commands you want to automate. Finally, use the sftp with
-B to connect to the remote host and run the batch file, as shown here: sftp -B batch_file
user@host.com.
6 November 2020

 Limit access to server files
Two server configuration keywords are available to restrict users to their home directory for file transfers:
ChrootSftpGroups and ChrootSftpUsers. These settings affect both sftp and scp connections from all
Reflection for Secure IT clients. For more information, refer to the Server Configuration Keywords in the
Appendix of the user guide.

Secure Communications using Port Forwarding
Port forwarding, also known as tunneling, is a powerful feature you can use to redirect communications
through the Secure Shell channel of an active session. When configured, this capability allows you to route all
your traffic through one secured port in the firewall (similar to the way SOCKS works, except with encryption).

You can use port forwarding to secure the data exchanged between any client and server applications that use
the TCP/IP protocol.

Configuring a local port to forward HTTP communications
The following example demonstrates forwarding of HTTP communications between a Web server and a Web
browser. You can use the same basic approach to secure communications sent to and from any TCP/IP client
and server applications.

1. From a computer running the Secure Shell client, create a forwarded port by entering the following
command (replace user@host.com with your user name and Secure Shell server host): $ ssh -L
8080:support.microfocus.com:80 user@host.com.

2. Enter your password to authenticate to the Secure Shell server.
3. Open a web browser and enter the following URL: http:\\localhost:8080

Your browser should now display the Micro Focus support web site.

What’s going on?

The ssh -L option can be used to configure the client to forward data from a specified local port through the
Secure Shell tunnel to the Secure Shell server. From there, the data can be redirected to a port on the same
server, or to a port on a different host.

Here’s what happens when you execute the command shown in the previous example:

1. After you authenticate to the Secure Shell server (host.com in the example), a secure tunnel is established
between your client computer and host.com. Because local port forwarding is configured, the client also
starts listening on port 8080.

2. When you point your browser to the forwarded port on the client computer (localhost:8080 in the
example), the data sent to this port is forwarded through the secure tunnel to the Secure Shell port on
host.com.

3. The server forwards this data (in the clear) to the specified destination (port 80 on
support.microfocus.com in this example).

4. Data from the web server is returned to the client using the same pathway in reverse.

NOTE: In this somewhat artificial example, the HTTP data is encrpted between your Secure Shell client and the
Secure Shell server. It then passes in the clear over the Internet between the Secure Shell server and the web
server. In a real-world example, both servers would typically be on the same side of your firewall. For more
information on port forwarding, see Port Forwarding in the user guide.
Reflection for Secure IT Client and Server for UNIX Evaluation Guide 7

Do more...
 Forward data exchanged between any TCP/IP client and server

You can secure the data exchanged between any client and server applications that use the TCP/IP
protocol. This means that you can securely forward Telnet, HTTP, SMTP, POP, and IMAP communications
over an untrusted network. Once you’ve configured a forwarded port, set your TCP/IP application to
connect to the forwarded port.

 Configure forwarding using the command line or the configuration file
Reflection for Secure IT offers flexible options for configuring forwarding. In addition to configuring port
forwarding from the command line, you can configure forwarding using the LocalForward and
RemoteForward keywords in the client configuration file.
By using these keywords within host stanzas, you can configure different port forwarding behavior for
connections to different hosts

Centralized Public Key Infrastructure (PKI) Support
Reflection PKI Services Manager uses PKI to validate the authenticity of certificates presented by
communicating parties. Using PKI Manager you can centrally administer PKI functions, such as specifying trust
anchor certificates, certificate stores, certificate revocation checking, certificate-to-user- ID mapping, and
audit logging for multiple servers.

PKI Manager is included as a component of Reflection for Secure IT, at no additional cost. It is a separate
download and installation. For detailed information about installing and configuring PKI support, see the
Reflection PKI Services Manager user guide on the documentation page: https://support.microfocus.com/
manuals/reflection.html?prod=PKID.

Legal Notice
© Copyright 2020 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are
set forth in the express warranty statements accompanying such products and services. Nothing herein should
be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or editorial
errors or omissions contained herein. The information contained herein is subject to change without notice.

Contains Confidential Information. Except as specifically indicated otherwise, a valid license is required for
possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.
8 November 2020

	Reflection for Secure IT Client and Server for UNIX Evaluation Guide
	Serious about Security?
	Why use Secure Shell?
	Why use Reflection for Secure IT?
	See for yourself!
	Getting started with Reflection for Secure IT
	Displaying the host key fingerprint

	Getting Connected
	Connect to localhost
	Connecting securely to a remote server

	Do more...
	Secure File Transfer
	Transferring files using scp
	Tranferring files using sftp
	Do more...

	Secure Communications using Port Forwarding
	Configuring a local port to forward HTTP communications
	Do more...

	Centralized Public Key Infrastructure (PKI) Support
	Legal Notice

